Copied to
clipboard

G = C23.565C24order 128 = 27

282nd central stem extension by C23 of C24

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C23.565C24, C24.379C23, C22.2542- (1+4), C22.3392+ (1+4), (C22×C4)⋊15Q8, C23.69(C2×Q8), C23⋊Q8.18C2, (C23×C4).439C22, (C2×C42).629C22, (C22×C4).170C23, C2.11(C232Q8), C23.Q8.25C2, C23.7Q8.62C2, C22.139(C22×Q8), C23.34D4.24C2, (C22×Q8).170C22, C23.78C2335C2, C23.67C2376C2, C23.83C2373C2, C2.54(C22.32C24), C23.63C23122C2, C2.C42.279C22, C2.65(C22.36C24), C2.26(C23.41C23), C2.42(C23.37C23), (C2×C4).169(C2×Q8), (C4×C22⋊C4).74C2, (C2×C4).185(C4○D4), (C2×C4⋊C4).386C22, C22.432(C2×C4○D4), (C2×C22⋊C4).522C22, SmallGroup(128,1397)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C23.565C24
C1C2C22C23C22×C4C2.C42C23.67C23 — C23.565C24
C1C23 — C23.565C24
C1C23 — C23.565C24
C1C23 — C23.565C24

Subgroups: 420 in 212 conjugacy classes, 96 normal (22 characteristic)
C1, C2 [×3], C2 [×4], C2 [×2], C4 [×18], C22 [×3], C22 [×4], C22 [×10], C2×C4 [×8], C2×C4 [×42], Q8 [×8], C23, C23 [×2], C23 [×6], C42 [×2], C22⋊C4 [×8], C4⋊C4 [×10], C22×C4 [×2], C22×C4 [×16], C22×C4 [×2], C2×Q8 [×8], C24, C2.C42 [×4], C2.C42 [×12], C2×C42 [×2], C2×C22⋊C4 [×2], C2×C22⋊C4 [×4], C2×C4⋊C4 [×8], C23×C4, C22×Q8 [×2], C4×C22⋊C4, C23.7Q8, C23.34D4, C23.63C23 [×2], C23.67C23 [×2], C23⋊Q8 [×2], C23.78C23 [×2], C23.Q8 [×2], C23.83C23 [×2], C23.565C24

Quotients:
C1, C2 [×15], C22 [×35], Q8 [×4], C23 [×15], C2×Q8 [×6], C4○D4 [×4], C24, C22×Q8, C2×C4○D4 [×2], 2+ (1+4) [×3], 2- (1+4), C23.37C23, C22.32C24 [×2], C22.36C24 [×2], C232Q8, C23.41C23, C23.565C24

Generators and relations
 G = < a,b,c,d,e,f,g | a2=b2=c2=d2=1, e2=f2=c, g2=b, ab=ba, ac=ca, ede-1=ad=da, ae=ea, gfg-1=af=fa, ag=ga, bc=cb, fdf-1=bd=db, be=eb, bf=fb, bg=gb, cd=dc, fef-1=ce=ec, cf=fc, cg=gc, dg=gd, eg=ge >

Smallest permutation representation
On 64 points
Generators in S64
(1 11)(2 12)(3 9)(4 10)(5 38)(6 39)(7 40)(8 37)(13 41)(14 42)(15 43)(16 44)(17 45)(18 46)(19 47)(20 48)(21 49)(22 50)(23 51)(24 52)(25 53)(26 54)(27 55)(28 56)(29 57)(30 58)(31 59)(32 60)(33 63)(34 64)(35 61)(36 62)
(1 51)(2 52)(3 49)(4 50)(5 36)(6 33)(7 34)(8 35)(9 21)(10 22)(11 23)(12 24)(13 25)(14 26)(15 27)(16 28)(17 29)(18 30)(19 31)(20 32)(37 61)(38 62)(39 63)(40 64)(41 53)(42 54)(43 55)(44 56)(45 57)(46 58)(47 59)(48 60)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)(33 35)(34 36)(37 39)(38 40)(41 43)(42 44)(45 47)(46 48)(49 51)(50 52)(53 55)(54 56)(57 59)(58 60)(61 63)(62 64)
(2 12)(4 10)(5 62)(6 33)(7 64)(8 35)(14 42)(16 44)(17 29)(18 58)(19 31)(20 60)(22 50)(24 52)(26 54)(28 56)(30 46)(32 48)(34 40)(36 38)(37 61)(39 63)(45 57)(47 59)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 45 3 47)(2 48 4 46)(5 16 7 14)(6 15 8 13)(9 19 11 17)(10 18 12 20)(21 31 23 29)(22 30 24 32)(25 33 27 35)(26 36 28 34)(37 41 39 43)(38 44 40 42)(49 59 51 57)(50 58 52 60)(53 63 55 61)(54 62 56 64)
(1 55 51 43)(2 56 52 44)(3 53 49 41)(4 54 50 42)(5 46 36 58)(6 47 33 59)(7 48 34 60)(8 45 35 57)(9 25 21 13)(10 26 22 14)(11 27 23 15)(12 28 24 16)(17 61 29 37)(18 62 30 38)(19 63 31 39)(20 64 32 40)

G:=sub<Sym(64)| (1,11)(2,12)(3,9)(4,10)(5,38)(6,39)(7,40)(8,37)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(31,59)(32,60)(33,63)(34,64)(35,61)(36,62), (1,51)(2,52)(3,49)(4,50)(5,36)(6,33)(7,34)(8,35)(9,21)(10,22)(11,23)(12,24)(13,25)(14,26)(15,27)(16,28)(17,29)(18,30)(19,31)(20,32)(37,61)(38,62)(39,63)(40,64)(41,53)(42,54)(43,55)(44,56)(45,57)(46,58)(47,59)(48,60), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (2,12)(4,10)(5,62)(6,33)(7,64)(8,35)(14,42)(16,44)(17,29)(18,58)(19,31)(20,60)(22,50)(24,52)(26,54)(28,56)(30,46)(32,48)(34,40)(36,38)(37,61)(39,63)(45,57)(47,59), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,45,3,47)(2,48,4,46)(5,16,7,14)(6,15,8,13)(9,19,11,17)(10,18,12,20)(21,31,23,29)(22,30,24,32)(25,33,27,35)(26,36,28,34)(37,41,39,43)(38,44,40,42)(49,59,51,57)(50,58,52,60)(53,63,55,61)(54,62,56,64), (1,55,51,43)(2,56,52,44)(3,53,49,41)(4,54,50,42)(5,46,36,58)(6,47,33,59)(7,48,34,60)(8,45,35,57)(9,25,21,13)(10,26,22,14)(11,27,23,15)(12,28,24,16)(17,61,29,37)(18,62,30,38)(19,63,31,39)(20,64,32,40)>;

G:=Group( (1,11)(2,12)(3,9)(4,10)(5,38)(6,39)(7,40)(8,37)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(31,59)(32,60)(33,63)(34,64)(35,61)(36,62), (1,51)(2,52)(3,49)(4,50)(5,36)(6,33)(7,34)(8,35)(9,21)(10,22)(11,23)(12,24)(13,25)(14,26)(15,27)(16,28)(17,29)(18,30)(19,31)(20,32)(37,61)(38,62)(39,63)(40,64)(41,53)(42,54)(43,55)(44,56)(45,57)(46,58)(47,59)(48,60), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (2,12)(4,10)(5,62)(6,33)(7,64)(8,35)(14,42)(16,44)(17,29)(18,58)(19,31)(20,60)(22,50)(24,52)(26,54)(28,56)(30,46)(32,48)(34,40)(36,38)(37,61)(39,63)(45,57)(47,59), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,45,3,47)(2,48,4,46)(5,16,7,14)(6,15,8,13)(9,19,11,17)(10,18,12,20)(21,31,23,29)(22,30,24,32)(25,33,27,35)(26,36,28,34)(37,41,39,43)(38,44,40,42)(49,59,51,57)(50,58,52,60)(53,63,55,61)(54,62,56,64), (1,55,51,43)(2,56,52,44)(3,53,49,41)(4,54,50,42)(5,46,36,58)(6,47,33,59)(7,48,34,60)(8,45,35,57)(9,25,21,13)(10,26,22,14)(11,27,23,15)(12,28,24,16)(17,61,29,37)(18,62,30,38)(19,63,31,39)(20,64,32,40) );

G=PermutationGroup([(1,11),(2,12),(3,9),(4,10),(5,38),(6,39),(7,40),(8,37),(13,41),(14,42),(15,43),(16,44),(17,45),(18,46),(19,47),(20,48),(21,49),(22,50),(23,51),(24,52),(25,53),(26,54),(27,55),(28,56),(29,57),(30,58),(31,59),(32,60),(33,63),(34,64),(35,61),(36,62)], [(1,51),(2,52),(3,49),(4,50),(5,36),(6,33),(7,34),(8,35),(9,21),(10,22),(11,23),(12,24),(13,25),(14,26),(15,27),(16,28),(17,29),(18,30),(19,31),(20,32),(37,61),(38,62),(39,63),(40,64),(41,53),(42,54),(43,55),(44,56),(45,57),(46,58),(47,59),(48,60)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32),(33,35),(34,36),(37,39),(38,40),(41,43),(42,44),(45,47),(46,48),(49,51),(50,52),(53,55),(54,56),(57,59),(58,60),(61,63),(62,64)], [(2,12),(4,10),(5,62),(6,33),(7,64),(8,35),(14,42),(16,44),(17,29),(18,58),(19,31),(20,60),(22,50),(24,52),(26,54),(28,56),(30,46),(32,48),(34,40),(36,38),(37,61),(39,63),(45,57),(47,59)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,45,3,47),(2,48,4,46),(5,16,7,14),(6,15,8,13),(9,19,11,17),(10,18,12,20),(21,31,23,29),(22,30,24,32),(25,33,27,35),(26,36,28,34),(37,41,39,43),(38,44,40,42),(49,59,51,57),(50,58,52,60),(53,63,55,61),(54,62,56,64)], [(1,55,51,43),(2,56,52,44),(3,53,49,41),(4,54,50,42),(5,46,36,58),(6,47,33,59),(7,48,34,60),(8,45,35,57),(9,25,21,13),(10,26,22,14),(11,27,23,15),(12,28,24,16),(17,61,29,37),(18,62,30,38),(19,63,31,39),(20,64,32,40)])

Matrix representation G ⊆ GL8(𝔽5)

10000000
01000000
00100000
00010000
00004000
00000400
00000040
00000004
,
40000000
04000000
00100000
00010000
00004000
00000400
00000040
00000004
,
40000000
04000000
00400000
00040000
00001000
00000100
00000010
00000001
,
10000000
34000000
00400000
00040000
00001000
00002400
00001040
00002301
,
30000000
42000000
00010000
00400000
00001030
00000134
00000040
00000004
,
22000000
03000000
00300000
00020000
00003200
00001200
00000001
00000010
,
20000000
02000000
00400000
00040000
00002000
00004300
00000020
00000003

G:=sub<GL(8,GF(5))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,3,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,2,1,2,0,0,0,0,0,4,0,3,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1],[3,4,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,3,3,4,0,0,0,0,0,0,4,0,4],[2,0,0,0,0,0,0,0,2,3,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,3,1,0,0,0,0,0,0,2,2,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0],[2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,2,4,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,3] >;

32 conjugacy classes

class 1 2A···2G2H2I4A4B4C4D4E···4N4O···4V
order12···22244444···44···4
size11···14422224···48···8

32 irreducible representations

dim11111111112244
type++++++++++-+-
imageC1C2C2C2C2C2C2C2C2C2Q8C4○D42+ (1+4)2- (1+4)
kernelC23.565C24C4×C22⋊C4C23.7Q8C23.34D4C23.63C23C23.67C23C23⋊Q8C23.78C23C23.Q8C23.83C23C22×C4C2×C4C22C22
# reps11112222224831

In GAP, Magma, Sage, TeX

C_2^3._{565}C_2^4
% in TeX

G:=Group("C2^3.565C2^4");
// GroupNames label

G:=SmallGroup(128,1397);
// by ID

G=gap.SmallGroup(128,1397);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,253,456,758,723,352,185,136]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=1,e^2=f^2=c,g^2=b,a*b=b*a,a*c=c*a,e*d*e^-1=a*d=d*a,a*e=e*a,g*f*g^-1=a*f=f*a,a*g=g*a,b*c=c*b,f*d*f^-1=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,f*e*f^-1=c*e=e*c,c*f=f*c,c*g=g*c,d*g=g*d,e*g=g*e>;
// generators/relations

׿
×
𝔽